Partial Monoids and Dold-thom Functors

نویسنده

  • JACOB MOSTOVOY
چکیده

Dold-Thom functors are generalizations of infinite symmetric products, where integer multiplicities of points are replaced by composable elements of a partial abelian monoid. It is well-known that for any connective homology theory, the machinery of Γ-spaces produces the corresponding linear Dold-Thom functor. In this note we show how to obtain such functors directly

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Equivariant Dold-thom Theorem

(1) A. Dold, R. Thom, Quasifaserungen und unendliche symmetrische produkte, Ann. of Math. (2) 67 (1958), 239–281. (2) E. Spanier, Infinite symmetric products, function spaces, and duality, Ann. of Math. (2) 69 (1959), 142–198. (3) M. C. McCord, Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc. 146 (1969), 273–298. (4) M. G. Barratt, S. Priddy, On the homology of non-co...

متن کامل

ar X iv : 0 80 4 . 02 64 v 1 [ m at h . A T ] 1 A pr 2 00 8 A MODEL FOR EQUIVARIANT EILENBERG - MAC LANE SPECTRA

Let G be a finite group. For a based G-space X and a Mackey functor M , a topological Mackey functor X e ⊗M is constructed. When X is a based G-CW complex, X e ⊗M is shown to be an infinite loop space in the sense of G-spaces. This gives a version of the RO(G)-graded equivariant Dold-Thom theorem. Applying a variant of Elmendorf’s construction, we get a model for the Eilenberg-Mac Lane spectrum...

متن کامل

Nash Equilibria via Duality and Homological Selection

Cost functions in problems concerning the existence of Nash Equilibria are traditionally multilinear in the mixed strategies. The main aim of this paper is to relax the hypothesis of multilinearity. We use basic intersection theory, Poincaré Duality and the Dold-Thom Theorem to establish existence of Nash Equilibria under fairly general topological hypotheses. The Dold-Thom Theorem provides us ...

متن کامل

Combinatorial Categorical Equivalences

In this paper we prove a class of equivalences of additive functor categories that are relevant to enumerative combinatorics, representation theory, and homotopy theory. Let X denote an additive category with finite direct sums and splitting idempotents. The class includes (a) the Dold-Puppe-Kan theorem that simplicial objects in X are equivalent to chain complexes in X ; (b) the observation of...

متن کامل

Affine Functors of Monoids and Duality

Let G = SpecA be an affine functor of monoids. We prove that A∗ is the enveloping functor of algebras of G and that the category of Gmodules is equivalent to the category of A∗-modules. Moreover, we prove that the category of affine functors of monoids is anti-equivalent to the category of functors of affine bialgebras. Applications of these results include Cartier duality, neutral Tannakian du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008